Recent progress on neural PDFs

NNPDF Collaboration

HERA and the LHC Workshop

21st March 2005

HERA and the LHC Workshop

Image: A math a math

NNPDF Collaboration

The NNPDF Collaboration

Luigi Del Debbio¹, Stefano Forte², José I. Latorre³, Andrea Piccione⁴ and Joan Rojo³,

¹ Theory Division, CERN

² Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano
 ³ Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona
 ⁴ Dipartimento di Fisica Teorica, Università di Torino and INFN, Sezione di Torino

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

HERA and the LHC Workshop

NNPDF Collaboration

< □ > < 同 >

HERA and the LHC Workshop

Motivation

The name of the game Ways out

Structure Functions

The NNPDF approach Neural Networks Results

Parton Distributions

The NNPDF approach PDF Evolution The Fit Results

Conclusions

NNPDF Collaboration

Structure Function

Parton Distributions

DIS data \rightarrow Structure Functions

 \blacktriangleright Structure Function=Hard. Coeff. \otimes Parton Distn.

$$F^{NC}(x,Q^{2}) = x \sum_{f} e_{f}^{2}(q_{f} + \bar{q}_{f}) + \alpha_{s} \left[C_{f}(\alpha_{s}) \otimes (q_{f} + \bar{q}_{f})C_{g}(\alpha_{s}) \otimes g\right]$$

- Trivial complication: disentangle quark flavors and gluon, evolve to common scale, deconvolute
- Serious complication: determine errors on PDFs

NNPDE Collaboration

The Problem

- \blacktriangleright For a single quantity $\rightarrow 1$ sigma errors
- For a pair of numbers $\rightarrow 1$ sigma ellipse
- For a function → We need the probability measure P [f] in the space of functions f(x)

Expectation values \rightarrow Functional integrals

$$\langle \mathcal{F}[f(x)] \rangle = \int \mathcal{D}f \mathcal{F}[f(x)] \mathcal{P}[f(x)]$$

Determine an infinite-dimensional object (a function) from finite set of data points \rightarrow Mathematically ill-posed problem

The standard approach

- 1. Choose a simple functional form with enough free parameters
- 2. Fit parameters by minimizing χ^2

Some difficulties arise:

- Errors and correlations of parameters require at least fully correlated analysis of data errors
- Error propagation to observables is difficult: many observables are nonlinear/nonlocal functional of parameters
- Theoretical bias due to choice of parametrization is difficult to assess (effects can be large if data are not precise or hardly compatible)

The NNPDF approach

- Determination of the Structure Functions \rightarrow Done
- \blacktriangleright Determination of the Parton Distributions \rightarrow Working on it ...

HERA and the LHC Workshop

Image: A mathematical states and a mathem

NNPDF Collaboration

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

HERA and the LHC Workshop

Motivation The name of the game Ways out

Structure Functions

The NNPDF approach Neural Networks Results

Parton Distributions The NNPDF approach PDF Evolution The Fit Results

Conclusions

NNPDF Collaboration

General strategy: I

- ► Monte Carlo sampling of data (Generation of replicas of experimental data) → Faithful representation of uncertainties
- ► Neural network training over Monte Carlo replicas → Unbiased parametrization

Expectation values \rightarrow Sum over the Nets

$$\left\langle \mathcal{F}\left[F(x,Q^{2})\right]
ight
angle =rac{1}{N_{rep}}\sum_{k=1}^{N_{rep}}\mathcal{F}\left(F^{(net)(k)}(x,Q^{2})
ight)$$

 $\mathcal{P}[F(x)]$ validated through statistical estimators

Image: A math a math

NNPDF Collaboration

Motivation

Structure Functions

Parton Distributions

Conclusions

The NNPDF approach

General strategy: II

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ つへの

NNPDF Collaboration

HERA and the LHC Workshop

Structure I

Neural networks: a class of algorithms providing robust, universal, unbiased approximants to incomplete or noisy data

Image: Image:

NNPDF Collaboration

Motivation 0000 Neural Networks Structure Functions

Parton Distributions

Structure II

Building blocks: neurons, *i. e.* input/output units characterized by sigmoid activation

$$\xi_i^{(l)} = g\left(\sum_{j=1}^{n_l-1} \omega_{ij}^{(l-1)} \xi_j^{(l-1)} - \theta_i^{(l)}\right) \quad g(x) = \frac{1}{1 + e^{-x}}$$

- Parameters: weights $\omega_{ii}^{(l)}$ and thresholds $\theta_i^{(l)}$.
- Architecture: multilayer feed-forward NN. Each neuron receives input from neurons in preceding layer and feeds output to neurons in successive layer
- Assumption: smooth function

Motivation 0000 Neural Networks

< □ > < 同 >

Training

- Architecture: redundant to avoid smoothing bias
- Learning: supervised training on covariance matrix error (highly nonlocal error function)
- Training method: Genetic Algorithm (extremely effective to find the global minimum, but slow convergence rate)

NNPDE Collaboration

Credits

- S. Forte, L. Garrido, J. I. Latorre and A. P., "Neural network parametrization of deep-inelastic structure functions," JHEP 0205 (2002) 062 [arXiv:hep-ph/0204232]
- L. Del Debbio, S. Forte, J. I. Latorre, A. P. and J. Rojo [NNPDF Collaboration], "Unbiased determination of the proton structure function F₂^p with faithful uncertainty estimation", [arXiv:hep-ph/0501067]

Source code, driver program and graphical web interface for F_2 plots and numerical computations available

http://sophia.ecm.ub.es/f2neural

Image: A math a math

Structure Functions

Parton Distributions

Results

Fit of $F_2^p(x, Q^2)$

NNPDF Collaboration

HERA and the LHC Workshop

Motivation The name of the gam Ways out

Structure Functions The NNPDF approach Neural Networks Results

Parton Distributions

The NNPDF approach PDF Evolution The Fit Results

Conclusions

・ロト・日本・日本・日本・日本・今日の

HERA and the LHC Workshop

NNPDF Collaboration

Strategy

Same strategy as with SF + Altarelli-Parisi evolution

- Monte Carlo sampling of data
- Parametrize parton distributions with neural networks
- Evolution of parton distributions to experimental data scale and training over Monte Carlo replica sample

The probability measure $\mathcal{P}[q]$ contains all information from experimental data (central values, errors, correlations)

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivation 0000 Structure Functio

Parton Distributions

A B >
 A
 B >
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

HERA and the LHC Workshop

The NNPDF approach

Examples

Expectation values:

$$\langle \mathcal{F}[q(x)] \rangle = \frac{1}{N_{rep}} \sum_{k=1}^{N_{rep}} \mathcal{F}\left(q^{(net)(k)}(x)\right)$$

 Correlations between pairs of different parton distributions at different points:

$$\langle u(x_1)d(x_2)\rangle = rac{1}{N_{rep}}\sum_{k=1}^{N_{rep}}u^{(net)(k)}(x_1,Q_0^2)d^{(net)(k)}(x_2,Q_0^2)$$

NNPDF Collaboration

Evolution kernel

We want Mellin space evolution:

$$q(N,Q^{2}) = q(N,Q_{0}^{2}) \Gamma\left(N,\alpha_{s}\left(Q^{2}\right),\alpha_{s}\left(Q_{0}^{2}\right)\right)$$

We do not want complex neural networks:

$$\Gamma\left(x,\alpha_{s}\left(Q^{2}\right),\alpha_{s}\left(Q^{2}_{0}\right)\right)\equiv\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}dN\,x^{-N}\Gamma\left(N,\alpha_{s}\left(Q^{2}\right),\alpha_{s}\left(Q^{2}_{0}\right)\right)$$

• $\Gamma(x)$ is a distribution \rightarrow must be regularized at x = 1:

$$q(x,Q^2) = q(x,Q_0^2) \int_x^1 dy \ \Gamma(y) + \int_x^1 \frac{dy}{y} \Gamma(y) \left(q\left(\frac{x}{y},Q_0^2\right) - yq(x,Q_0^2)\right)$$

NNPDF Collaboration

Some details

• At higher orders \rightarrow Wilson coefficients $C(N, \alpha_s(Q^2))$

$$\tilde{\Gamma}\left(x,\alpha_{s}\left(Q^{2}\right),\alpha_{s}\left(Q^{2}_{0}\right)\right)=\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}dN\ x^{-N}C\left(N,\alpha_{s}\left(Q^{2}\right)\right)\Gamma\left(N\right)$$

▶ Mellin transform inversion of evolution factor is crucial.
 We tested different paths and algorithms → Fixed Talbot

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

NNPDE Collaboration

Interpolation

- ► During *pdf training* $\Gamma(x)$ is called many times \rightarrow Interpolate $\Gamma(x)$ before the fit (hard numerical task)
- For each Q^2 bin x interpolation with ~ 100 Chebyshev polynomials

$$\Gamma(x) \approx \left[\sum_{k=1}^{N} c_k T_{k-1}(x)\right] - \frac{1}{2}c_1 \quad T_n(x) = \cos(n \arccos x)$$

HERA and the LHC Workshop

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

NNPDF Collaboration

LHAPDF Benchmark

Next-to-Leading Order FFN, 2 $GeV^2 ightarrow 10000 \ GeV^2$			
х	$xu_v(x, Q^2)$ (LH)	$xu_v(x, Q^2)$ (CB)	Rel. error
0.001	5.7926 10^{-2}	5.7932 10^{-2}	$1.1 \ 10^{-4}$
0.01	$2.3026 \ 10^{-1}$	$2.3025 \ 10^{-1}$	$4.7 \ 10^{-5}$
0.1	$5.5452 \ 10^{-1}$	$5.5452 \ 10^{-1}$	$2.4 10^{-6}$
0.3	$3.5393 \ 10^{-1}$	$3.5394 \ 10^{-1}$	$2.1 \ 10^{-5}$
0.5	$1.2271 \ 10^{-1}$	$1.2273 \ 10^{-1}$	$1.5 10^{-4}$
0.7	$2.0429 \ 10^{-2}$	$2.0427 \ 10^{-2}$	$1.1 \ 10^{-4}$
0.9	$3.6096 \ 10^{-4}$	$3.6086 \ 10^{-4}$	$3.0 \ 10^{-4}$

3

・ロン ・回 と ・ ヨン ・

Non-Singlet PDF

First application of the method:

$$\begin{aligned} F_2^{NS}(x,Q^2) &\equiv 2\left(F_2^p - F_2^d\right)(x,Q^2) \\ &= \frac{x}{6}\left(u + \bar{u} - d - \bar{d}\right)(x,Q^2) \equiv xq^{NS}(x,Q^2) \end{aligned}$$

• In the NS sector $\int_0^1 dx \ \Gamma(x) = 1$ to all orders:

$$q^{NS}(x, Q^{2}) = q^{NS}(x, Q_{0}^{2}) + \int_{x}^{1} \frac{dy}{y} \Gamma(y) \left(q^{NS}\left(\frac{x}{y}, Q_{0}^{2}\right) - yq^{NS}(x, Q_{0}^{2})\right) \\ - q^{NS}(x, Q_{0}^{2}) \int_{0}^{x} dy \Gamma(y)$$

HERA and the LHC Workshop

NNPDF Collaboration

x = 1

 \blacktriangleright Structure functions \rightarrow artificial points:

$$F_2(x=1,Q^2)=0$$

▶ Parton Distributions → Lagrange multiplier:

$$\chi^2=\chi^2+\lambda\left(q^{NS}(x=1,Q_0^2)
ight)^2, \hspace{1em} \lambda=10^6$$

NNPDF Collaboration Recent progress on neural PDFs HERA and the LHC Workshop

・ロン ・回 と ・ ヨン

Details

- Experimental data: NMC (202 pts) and BCDMS (254 pts)
- Kinematical cuts: $Q^2 \ge 4 \ GeV^2$, $W^2 \ge 6.25 \ GeV^2$
- Neural network architecture: 2-2-2-1 (15 params.)
- Strong coupling: $\alpha_s \left(M_Z^2 \right) = 0.1182$
- ▶ VFN: $m_c = 1.5 GeV$, $m_b = 4.5 GeV$, $m_t = 175 GeV$
- ► TMC: F₂ integral evaluated with NN F₂
- ▶ # replica: 50
- Time: ~ 2 hours per replica on CPU 2.6 GHz (~ 1000 GA generations)

Image: A math a math

Motivation 0000 Results Structure Functio

Parton Distributions

Conclusions

NLO $q^{NS}(x, Q^2)$

NNPDF Collaboration

HERA and the LHC Workshop

< 17 >

Motivation

Structure Function

Parton Distributions

Conclusions

Results

 F_2^{NS} vs. x

NNPDF Collaboration

HERA and the LHC Workshop

2

Motivation

Structure Functior

Parton Distributions

Conclusions

Results

 F_2^{NS} vs. Q^2

NNPDF Collaboration

HERA and the LHC Workshop

2

Summary

- Unbiased determination of structure functions with faithful estimation of uncertainties
- Successful implementation of neural parton fitting at NLO (errors and correlations are forthcoming)

HERA and the LHC Workshop

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

NNPDF Collaboration

Outlook

- Construct full set of NNPDF parton distributions from all available data
- Estimate impact of theoretical uncertainties
- Assess impact of uncertainties of PDFs for relevant observables at LHC
- Perform a benchmark set of pdfs, to compare the different fitting programs (CTEQ,MRST, Alekhin)
- Make formalism compatible with standard interfaces (LHAPDF, PDFLIB) → NNPDF partons available for use in Monte Carlo generators

Image: A math a math

SF: Extras I

Kinematic of data used in the NN fit:

HERA and the LHC Workshop

< 0 > < 0 >

NNPDF Collaboration

SF: Extras II

Comparison between the old and the new NN fit of F_2^p :

$$P(x, Q^{2}) \equiv \frac{F_{2}^{hew}(x, Q^{2}) - F_{2}^{hew}(x, Q^{2})}{\sqrt{\sigma_{old}^{2}(x, Q^{2}) + \sigma_{new}^{2}(x, Q^{2})}}$$

NNPDF Collaboration

Recent progress on neural PDFs

HERA and the LHC Workshop

Conclusions

PDF: Extras

Mellin Inversion with the Fixed Talbot algorithm:

$$f(t) = \frac{1}{2\pi i} \int_{C} ds \ e^{ts} \tilde{f}(s), \quad t = -\ln x$$

$$s(\theta) = r\theta \left(\cot \theta + i\right), \quad -\pi \le \theta \le \pi$$

$$f(t) = \frac{r}{\pi} \int_{0}^{\pi} d\theta \ Re \left[\exp(ts(\theta))\tilde{f}(s(\theta))(1 + i\sigma(\theta))\right]$$

$$\sigma(\theta) = \theta + (\theta \cot \theta - 1)\cot \theta$$

$$f(t, M) = \frac{r}{M} \left[\frac{1}{2}\tilde{f}(r)e^{rt} + \sum_{k=1}^{M-1} Re \left[\exp(ts(\theta_{k}))\tilde{f}(s(\theta_{k}))(1 + i\sigma(\theta_{k}))\right]\right]$$

$$r = \frac{2M}{5t}, \qquad \theta_{k} = \frac{k\pi}{M}$$

HERA and the LHC Workshop

・ロン ・回 と ・ ヨン

NNPDF Collaboration