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The name of the game

What do we need for the LHC?

I SPS: hadronic collider, strong signals and low precision

I LEP: leptonic collider, low signals and high precision

I LHC: hadronic collider, low signals and high precision
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The name of the game

What do we need for the LHC?

I Good reconstruction of final states

I Precise partonic cross-sections calculations

I Accurate description of incoming hadrons
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The name of the game

How do we describe hadrons?

I QCD describes interactions between quarks and gluons.
Experimentally we observe only hadrons → Confinement

I Perturbative QCD is not trustable at low energies (∼ GeV).
We can not solve QCD in the non-perturbative region, but on
a lattice . . .

I We can extract information on the proton structure from a
process with only one initial proton (DIS at HERA).
Then we can use these as an input for a process where two
initial protons are involved (DY at LHC) → Factorization
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The name of the game

LHC and DIS kinematics
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The name of the game

Deep Inelastic Scattering

I The cross section

d2σ

dxdQ2
=

4πα2

Q4

»
[1 + (1− y)2]F1 +

1− y

x
(F2 − 2xF1)

–

I The structure function

F2(x , Q2) = x

"
nfX

q=1

e2
q Cq ⊗ qq(x , Q2) + 2nf Cg ⊗ g(x , Q2)

#

I Parton distribution evlution is described by DGLAP equations

Q2 d

dQ2
q(x , Q2) =

αs(Q
2)

2π
(P ⊗ q)(x , Q2)
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The name of the game

The problem

I For a single quantity → 1 sigma error

I For a pair of numbers → 1 sigma ellipse

I For a function → We need an “error band” in the space of
functions (i.e. the probability density P [f ] in the space of
functions f (x))

Expectation values → Functional integrals

〈F [f (x)]〉 =

Z
DfF [f (x)]P [f (x)]

Determine an infinite-dimensional object (a function) from finite
set of data points → Mathematically ill-posed problem
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Ways out

A solution

1. Choose a basis of functions, and project the PDFs on it

2. Fit coefficients of basis elements by minimizing χ2

Some possible basis:

I q(x , Q2
0 ) = xα(1− x)βP(x ; λ1, . . . , λn)

[Les Houches Accord PDF sets: Alekhin, Botje, CTEQ, Fermi (GKK), GRV, H1, MRST, ZEUS]

I Orthogonal Polynomials
[F. J. Yndurain (1978), G. Parisi and N. Sourlas (1979), W. Furmanski and R. Petronzio (1982)]

I Truncated Moments
[S. Forte and L. Magnea (1999), S. Forte, L. Magnea, A. P. and G. Ridolfi (2001)]

I Neural Networks
[“Any continuous function can be uniformly approximated by a continuous neural network having only one

internal layer, and with an arbitrary continuous sigmoid non-linearity”, G. Cybenko (1989)]
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Ways out

Still some problems

I Error propagation from data to parameters and from
parameters to observables is not trivial

I Theoretical bias due to the choice of a parametrization is
difficult to assess (effects can be large if data are not precise
or hardly compatible)
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Ways out

The standard approach
I MRST: 15 parms. - ∆χ2 = 50 - NC and CC DIS, DY, W-asym, jets

xq(x, Q2
0 ) = A(1− x)η(1 + εx0.5 + γx)xδ

, x[ū − d̄ ](x, Q2
0 ) = A(1− x)η(1 + γx + δx2)xδ

.

xg(x, Q2
0 ) = Ag (1− x)ηg (1 + εg x0.5 + γg x)xδg − A−(1− x)

η− x
−δ− ,

I CTEQ: 20 parms. - ∆χ2 = 100 - NC and CC DIS, DY, W-asym, jets

x f (x, Q0) = A0 xA1 (1− x)A2 eA3x (1 + eA4 x)A5

with independent params for combinations uv ≡ u − ū, dv ≡ d − d̄ , g , and ū + d̄ , s = s̄ = 0.2 (ū + d̄)
at Q0; norm. fixed by sum rules

I Alekhin: 17 parms. - ∆χ2 = 1 - NC DIS (+ DY)

xuV (x, Q0) =
2

NV
u

xau (1− x)bu (1 + γ
u
2 x); xuS (x, Q0) =

AS

NS

ηuxas (1− x)bsu

xdV (x, Q0) =
1

NV
d

xad (1− x)bd ; xdS (x, Q0) =
AS

NS
xas (1− x)bsd ,

xsS (x, Q0) =
AS

NS
ηs x

as (1− x)(bsu+bsd )/2; xG(x, Q0) = AG xaG (1− x)bG (1 + γ
G
1

√
x + γ

G
2 x),
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Ways out

The standard approach - Higgs cross section

“Within a given set of PDFs, the

deviations of the cross sections

from the values obtained with the

reference PDF sets can reach the

level of 10% at the LHC in the

case of the gluon-gluon fusion pro-

cess for large enough Higgs boson

masses, MH ∼ 1TeV ”.

[A. Djouadi and S. Ferrag, hep-ph/0310209]
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Ways out

The standard approach - HERA-LHC WKS benchmark

“[. . . ] the inclusion of more data

from a variety of different experi-

ments moves the central values of

the partons in a manner indicat-

ing either that the different experi-

mental data are inconsistent with

each other, or that the theoreti-

cal framework is inadequate for cor-

rectly describing the full range of

data. To a certain extent both ex-

planations are probably true.”

[R. S. Thorne, hep-ph/0511119]
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Ways out

The standard approach - Dependence on αs

“the previous fits with αs(mZ ) =

0.118 are adequate for most pro-

cesses, because the uncertainty as-

sociated with αs is smaller than the

other sources of PDF uncertainty.

However, αs uncertainty is impor-

tant for inclusive jet production at

relatively small pT and Higgs boson

production by the gg → H process

in the standard model.”

[CTEQ, hep-ph/0512167]
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Ways out

The NNPDF approach

I Determination of the Structure Functions:
this is the easiest case, since no evolution is required, but only
data fitting. A good application to test the technique → Done

I Determination of the Parton Distributions:
the real stuff → Working on it ...
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Basics

What are Neural Networks?

Neural networks are a class of algorithms very suitable to fit
incomplete or noisy data
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Basics

Some details on their structure

I Building blocks: neurons, i. e. input/output units
characterized by sigmoid activation

ξ
(l)
i = g

 
nl−1X
j=1

ω
(l−1)
ij ξ

(l−1)
j − θ

(l)
i

!
g(x) =

1

1 + e−x

I Parameters: weights ω
(l)
ij and thresholds θ

(l)
i .

I Architecture: multilayer feed-forward NN. Each neuron
receives input from neurons in preceding layer and feeds
output to neurons in successive layer

I Assumption: smooth function
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Minimization (Training)

Back Propagation

1. Set the parameters randomly.

2. Present an input and calculate the output.

3. Evaluate χ2.

4. Modify the weights to reinforce correct decisions and
discourage incorrect ones:

ωij → ωij − η
∂χ2

∂ωij

where η is the learning rate.

5. Back to 2, till the stability of χ2 is reached
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Minimization (Training)

Genetic Algorithm

1. Set the parameters randomly.

2. Make clones of the set of parameters.

3. Mutate each clone.

4. Evaluate χ2 for all the clones.

5. Select the clone that has the lowest χ2.

6. Back to 2, till the stability of χ2 is reached.
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The NNPDF approach

General strategy

I Monte Carlo sampling of data (generation of replicas of
experimental data) → Faithful error propagation

F
(art)(k)
i =

“
1 + r

(k)
N σN

”24F
(exp)
i + r s

i σstat
i +

NsysX
l=1

r l,(k)σsys,l
i

35
I NN training over MC replicas → Unbiased parametrization

Expectation values → Sum over the Nets

〈
F

[
F (x ,Q2)

]〉
=

1

Nrep

Nrep∑
k=1

F
(
F (net)(k)(x ,Q2)

)
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The NNPDF approach

Details

Architecture: 4-5-3-1

I Inputs: x , log x , Q2, log Q2

I Output: F2(x ,Q2)

Minimization strategy:

I Back Propagation (∼ 108 training cycles):

χ
2 (k)
diag =

1

Ndat

NdatX
i=1

“
F

(art)(k)
i − F

(net)(k)
i

”2

σ
(exp)2

i,t

I Genetic Algorithm (∼ 104 generations):

χ2 (k) =
1

Ndat

NdatX
i,j=1

“
F

(art)(k)
i − F

(net)(k)
i

”
cov−1

ij

“
F

(art)(k)
j − F

(net)(k)
j

”

Andrea Piccione Edinburgh - Jan, 11th 2006

Extracting Parton Distribution Functions from data: the Neural Network approach



Motivation Neural Networks Structure Functions Parton Distributions Conclusions

The NNPDF approach

Details

Architecture: 4-5-3-1

I Inputs: x , log x , Q2, log Q2

I Output: F2(x ,Q2)

Minimization strategy:

I Back Propagation (∼ 108 training cycles):

χ
2 (k)
diag =

1

Ndat

NdatX
i=1

“
F

(art)(k)
i − F

(net)(k)
i

”2

σ
(exp)2

i,t

I Genetic Algorithm (∼ 104 generations):

χ2 (k) =
1

Ndat

NdatX
i,j=1

“
F

(art)(k)
i − F

(net)(k)
i

”
cov−1

ij

“
F

(art)(k)
j − F

(net)(k)
j

”

Andrea Piccione Edinburgh - Jan, 11th 2006

Extracting Parton Distribution Functions from data: the Neural Network approach



Motivation Neural Networks Structure Functions Parton Distributions Conclusions

Results

Credits

I S. Forte, L. Garrido, J. I. Latorre and A. P., “Neural network
parametrization of deep-inelastic structure functions,”
JHEP05 (2002) 062 [arXiv:hep-ph/0204232]

I L. Del Debbio, S. Forte, J. I. Latorre, A. P. and J. Rojo
[NNPDF Collaboration], “Unbiased determination of the
proton structure function F p

2 with faithful uncertainty
estimation”, JHEP03 (2005) 080 [arXiv:hep-ph/0501067]

Source code, driver program and graphical web interface for F2

plots and numerical computations available @

http://sophia.ecm.ub.es/f2neural
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Results

Fit of F p
2 (x , Q2)
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The NNPDF approach

Same strategy

I Monte Carlo sampling of data

I Parametrization of parton distributions with neural networks

I DGLAP evolution of parton distributions to experimental data
scale and training over Monte Carlo replica sample
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The NNPDF approach

Same strategy, but much more complex!

I Monte Carlo sampling of data

I Parametrization of parton distributions with neural networks

I DGLAP evolution of parton distributions to experimental data
scale and training over Monte Carlo replica sample
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The NNPDF approach

Examples

I Expectation values:

〈F [g(x)]〉 =
1

Nrep

NrepX
k=1

F
“
g (net)(k)(x)

”

I Errors:
σF [g(x)] =

q˙
F [g(x)]2

¸
− 〈F [g(x)]〉2

I Correlations between pairs of different parton distributions at
different points:

〈u(x1)d(x2)〉 =
1

Nrep

NrepX
k=1

u(net)(k)(x1, Q
2
0 )d

(net)(k)(x2, Q
2
0 )
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The NNPDF approach

PDF Evolution (very technical!)

I We want Mellin space evolution (numerically efficient):

q(N, Q2) = q(N, Q2
0 )Γ
“
N, αs

“
Q2
”

, αs

“
Q2

0

””

I We do not want complex neural networks:

Γ
“
x , αs

“
Q2
”

, αs

“
Q2

0

””
≡ 1

2πi

Z c+i∞

c−i∞
dN x−NΓ

“
N, αs

“
Q2
”

, αs

“
Q2

0

””

I Γ(x) is a distribution → must be regularized at x = 1:

q(x , Q2) = q(x , Q2
0 )

Z 1

x

dy Γ(y)+

Z 1

x

dy

y
Γ(y)

„
q

„
x

y
, Q2

0

«
− yq(x , Q2

0 )

«
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Results

Details (technical)

I qNS(x ,Q2) ≡ 1
6

(
u + ū − d − d̄

)
(x ,Q2)

I Experimental data: NMC (229 pts) and BCDMS (254 pts)

I Kinematical cuts: Q2 ≥ 3 GeV 2, W 2 ≥ 6.25 GeV 2

I Neural network architecture: 2-5-3-1 (37 params.)

I Strong coupling: αs

(
M2

Z

)
= 0.1182

I Perturbative order: NLO

I VFN: mc = 1.5GeV , mb = 4.5GeV , mt = 175GeV

I TMC: F2 integral evaluated with NN F2

I # replica: 100 (should be 1000)
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Results

Non-Singlet (preliminary)
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Outlook

I Construct full set of NNPDF parton distributions from all
available data

I Assess impact of uncertainties of PDFs for relevant
observables at LHC

I Make formalism compatible with standard interfaces
(LHAPDF, PDFLIB) → NNPDF partons available for use in
Monte Carlo generators
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