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The name of the game

How do we describe hadrons?

I QCD describes interactions between quarks and gluons.
Experimentally we observe only hadrons → Confinement

I Perturbative QCD is not trustable at low energies (∼ GeV). We can
not solve QCD in the non-perturbative region, but on a lattice . . .

I We can extract information on the proton structure from a process
with only one initial proton (DIS at HERA).
Then we can use these as an input for a process where two initial
protons are involved (DY at LHC) → Factorization
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The name of the game

Kinematics
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The name of the game

Deep Inelastic Scattering

I The cross section

d2σ

dxdQ2
=

4πα2

Q4

»
[1 + (1− y)2]F1 +

1− y

x
(F2 − 2xF1)

–

I The structure function

F2(x , Q2) = x

"
nfX

q=1

e2
q Cq ⊗ qq(x , Q2) + 2nf Cg ⊗ g(x , Q2)

#

I Parton distribution evlution is described by DGLAP equations

Q2 d

dQ2
q(x , Q2) =

αs(Q
2)

2π
(P ⊗ q)(x , Q2)
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The name of the game

The problem

I For a single quantity → 1 sigma error

I For a pair of numbers → 1 sigma ellipse

I For a function → We need an “error band” in the space of functions
(i.e. the probability density P [f ] in the space of functions f (x))

Expectation values → Functional integrals

〈F [f (x)]〉 =

Z
DfF [f (x)]P [f (x)]

Determine an infinite-dimensional object (a function) from finite set of
data points → Mathematically ill-posed problem
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The name of the game

The standard approach

1. Choose a simple functional form with enough free parameters

q(x , Q2
0 ) = xα(1− x)βP(x ; λ1, . . . , λn)

2. Fit parameters by minimizing χ2

Open problems:

I Errors combination and propagation from data to parameters and
from parameters to observables is not trivial

I Theoretical bias due to the choice of a parametrization is difficult to
assess (effects can be large if data are not precise or hardly
compatible)

I NNLO vs. NLO+Resummations
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The name of the game

The standard approach - Limitations
[A. Djouadi and S. Ferrag, hep-ph/0310209]
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The name of the game

The standard approach - Limitations
[R. S. Thorne, hep-ph/0511119]
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The name of the game

The NNPDF approach
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The name of the game

The NNPDF approach
[S. Forte et al., hep-ph/0204232 - A. P., hep-ph/0207204 - L. Del Debbio et al., hep-ph/0501067]
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The NNPDF approach Monte Carlo

Faithful error propagation: Data → Parametrization

I Monte Carlo sampling of data (generation of replicas of experimental
data)

F
(art)(k)
i =

“
1 + r

(k)
N σN

”24F
(exp)
i + r s

i σstat
i +

NsysX
l=1

r l,(k)σsys,l
i

35
where σi are the experimantal errors, and ri are random numbers

choosen accordingly to the experimental correlation matrix.
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The NNPDF approach Monte Carlo

Faithful error propagation: Parametrization → Observables

I Expectation values:

〈F [g(x)]〉 =
1

Nrep

NrepX
k=1

F
“
g (net)(k)(x)

”

I Errors:
σF [g(x)] =

q˙
F [g(x)]2

¸
− 〈F [g(x)]〉2

I Correlations between pairs of different parton distributions at different
points:

〈u(x1)d(x2)〉 =
1

Nrep

NrepX
k=1

u(net)(k)(x1, Q
2
0 )d

(net)(k)(x2, Q
2
0 )
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The NNPDF approach Neural Networks

Unbiased parametrization

I A neural network is trained over each MC replica

I Neural networks are a class of algorithms very suitable to fit
incomplete or noisy data [for HEP applications see ACAT 2005]

I Any continuous function can be uniformly approximated by a
continuous neural network having only one internal layer, and with an
arbitrary continuous sigmoid non-linearity [G. Cybenko (1989)]
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The NNPDF approach Neural Networks

Unbiased parametrization

I Activation function:

ξ
(l)
i = g

 
nl−1X
j=1

ω
(l−1)
ij ξ

(l−1)
j − θ

(l)
i

!
, g(x) =

1

1 + e−x

I As an example, in a very simple case (1-2-1) we have

ξ
(3)
1 =

1

1 + e
θ

(3)
1 −

ω
(2)
11

1+e
θ

(2)
1
−ξ

(1)
1

ω
(1)
11

−
ω

(2)
12

1+e
θ

(2)
2
−ξ

(1)
1

ω
(1)
21
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The NNPDF approach Neural Networks

Minimization with a Genetic Algorithm

1. Set the parameters randomly.

2. Make clones of the set of parameters.

3. Mutate randomly each clone.

4. Evaluate χ2 for all the clones.

5. Select clones with the lowest χ2.

6. Back to 2, till χ2 ∼ χ̄2.
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The NNPDF approach Neural Networks

Learning of data
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The NNPDF approach Neural Networks

Incompatible data
[S. Forte et al., hep-ph/0204232 - A. P., hep-ph/0207204]
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The NNPDF approach Neural Networks

Incompatible data
[S. Forte et al., hep-ph/0204232 - A. P., hep-ph/0207204]
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The NNPDF approach Evolution

A new framework

I We want Mellin space evolution:

q(N, Q2) = q(N, Q2
0 )Γ
“
N, αs

“
Q2
”

, αs

“
Q2

0

””

I We do not want complex neural networks:

Γ
“
x , αs

“
Q2
”

, αs

“
Q2

0

””
≡ 1

2πi

Z c+i∞

c−i∞
dN x−NΓ

“
N, αs

“
Q2
”

, αs

“
Q2

0

””

I The evolved PDF is given by

q(x , Q2) =

Z 1

x

dy

y
Γ
“
y , αs

“
Q2
”

, αs

“
Q2

0

””
q

„
x

y
, Q2

0

«
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Results Parton Distribution Functions

Some details
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Results Parton Distribution Functions

Some details

I Neural network architecture: 2-5-3-1
(37 parameters).

I x q(x, Q2
0 ) = NN(x, log x)(1− x)a

q(x, Q2
0 ) = (u + ū − d − d̄)(x, Q2

0 )

Q2
0 = 2 GeV 2

I TMC: Georgi-Politzer,
F2 integral evaluated with NN F2

I ZM-VFN:
mc = 1.4GeV
mb = 4.5GeV
mt = 175GeV
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Results Parton Distribution Functions

Delivery

I # MC reps: 1000

I Strong coupling: αs

(
M2

Z

)
= 0.118± 0.002

I Perturbative order: LO, NLO, NNLO

I LHAPDF interface

I With αs = 0.118 @ NLO we have:

Total NMC BCDMS

χ2/d.o.f. 0.95 0.92 0.97
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Results Parton Distribution Functions

Reconstructing FNS
2 @ NLO with errors
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Results Nucleon Structure Functions

Fit of F d
2 (x , Q2)

[S. Forte et al., hep-ph/0204232 - A. P., hep-ph/0207204]
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Results Nucleon Structure Functions

Fit of F p
2 (x , Q2)

[L. Del Debbio et al., hep-ph/0501067]
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Results Nucleon Structure Functions

Resummations
[G. Corcella and L. Magnea, hep-ph/0506278]

qNLO (N, Q2) =
F (N − 1, Q2)

CNLO (N, αs (Q2))
qres (N, Q2) =

F (N − 1, Q2)

C res (N, αs (Q2))
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Results Nucleon Structure Functions

Re-evaluation of the Gottfried sum rule
[R. Abbate and S. Forte, hep-ph/0511231]

I NMC:
SG (0.004 < x < 0.8, 4 GeV2) = 0.2281± 0.0201

I NNPDF:
SG (0.004 < x < 0.8, 4 GeV2) = 0.2281± 0.0437

I The two estimations perfectly agree for all xmin < x < 0.8 ranges, but
the for the smallest xmin = 0.004.

I NMC uncertainty at the boundary of the measured region is evaluated
assuming that the error is linear across the bins, and this results in an
underestimation of the error on the last bin.

I The inclusion of the (assumed/unknown) small-x contribution yields

SG (1.5 GeV2 < Q2 < 4.5 GeV2) = 0.244± 0.045
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Conclusions

Results

We have developed a tool to fit data that

I provides a faithful combination of experimental errors;

I allows a faithful propagation of errors on computed observables;

I handles incompatibilities among experiments without assumptions;

I avoids theoretical biases on the used parametrization.

This approach is general and can be applied to different problems:

I Parton Distribution Functions;

I nucleon Structure Functions;

I b-meson Shape Function (?);

I any other idea? Let’s try . . .
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Conclusions

Perspectives

I Go ahead . . .

I . . . a singlet set from DIS data (December 2006?)

I . . . a singlet set from DIS+DY data (April 2007?)

Andrea Piccione (NNPDF) The neural network approach to parton fitting Torino, 2/5/06 27 / 31



Extras

The standard approach - Limitations
[A. Djouadi and S. Ferrag, hep-ph/0310209]
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Extras

The standard approach

I MRST: 15 parms. - ∆χ2 = 50 - NC and CC DIS, DY, W-asym, jets

xq(x, Q2
0 ) = A(1− x)η(1 + εx0.5 + γx)xδ

, x[ū − d̄ ](x, Q2
0 ) = A(1− x)η(1 + γx + δx2)xδ

.

xg(x, Q2
0 ) = Ag (1− x)ηg (1 + εg x0.5 + γg x)xδg − A−(1− x)

η− x
−δ− ,

I CTEQ: 20 parms. - ∆χ2 = 100 - NC and CC DIS, DY, W-asym, jets

x f (x, Q0) = A0 xA1 (1− x)A2 eA3x (1 + eA4 x)A5

with independent params for combinations uv ≡ u − ū, dv ≡ d − d̄ , g , and ū + d̄ , s = s̄ = 0.2 (ū + d̄) at Q0; norm.
fixed by sum rules

I Alekhin: 17 parms. - ∆χ2 = 1 - NC DIS (+ DY)

xuV (x, Q0) =
2

NV
u

xau (1− x)bu (1 + γ
u
2 x); xuS (x, Q0) =

AS

NS

ηuxas (1− x)bsu

xdV (x, Q0) =
1

NV
d

xad (1− x)bd ; xdS (x, Q0) =
AS

NS
xas (1− x)bsd ,

xsS (x, Q0) =
AS

NS
ηs x

as (1− x)(bsu+bsd )/2; xG(x, Q0) = AG xaG (1− x)bG (1 + γ
G
1

√
x + γ

G
2 x),

Andrea Piccione (NNPDF) The neural network approach to parton fitting Torino, 2/5/06 29 / 31



Extras

SF Details

Architecture: 4-5-3-1

I Inputs: x , log x , Q2, log Q2

I Output: F2(x ,Q2)

Minimization strategy:

I Back Propagation (∼ 108 training cycles):

χ
2 (k)
diag =

1

Ndat

NdatX
i=1

“
F

(art)(k)
i − F

(net)(k)
i

”2

σ
(exp)2

i,t

I Genetic Algorithm (∼ 104 generations):

χ2 (k) =
1

Ndat

NdatX
i,j=1

“
F

(art)(k)
i − F

(net)(k)
i

”
cov−1

ij

“
F

(art)(k)
j − F

(net)(k)
j

”
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Extras

Mellin Inversion with the Fixed Talbot algorithm

f (t) =
1

2πi

Z
C

ds ets f̃ (s), t = − ln x

s(θ) = rθ (cot θ + i) , −π ≤ θ ≤ π

f (t) =
r

π

Z π

0

dθ Re
h
exp(ts(θ))f̃ (s(θ))(1 + iσ(θ))

i
σ(θ) = θ + (θ cot θ − 1)cotθ

f (t, M) =
r

M

"
1

2
f̃ (r)ert +

M−1X
k=1

Re
h
exp(ts(θk))f̃ (s(θk))(1 + iσ(θk))

i#

r =
2M

5t
, θk =

kπ

M
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